[Federal Register Volume 75, Number 102 (Thursday, May 27, 2010)]
[Notices]
[Pages 29763-29766]
From the Federal Register Online via the Government Publishing Office [www.gpo.gov]
[FR Doc No: 2010-12794]


-----------------------------------------------------------------------

DEPARTMENT OF HEALTH AND HUMAN SERVICES

National Institutes of Health


Government-Owned Inventions; Availability for Licensing

AGENCY: National Institutes of Health, Public Health Service, HHS.

ACTION: Notice.

-----------------------------------------------------------------------

SUMMARY: The inventions listed below are owned by an agency of the U.S. 
Government and are available for

[[Page 29764]]

licensing in the U.S. in accordance with 35 U.S.C. 207 to achieve 
expeditious commercialization of results of federally-funded research 
and development. Foreign patent applications are filed on selected 
inventions to extend market coverage for companies and may also be 
available for licensing.

ADDRESSES: Licensing information and copies of the U.S. patent 
applications listed below may be obtained by writing to the indicated 
licensing contact at the Office of Technology Transfer, National 
Institutes of Health, 6011 Executive Boulevard, Suite 325, Rockville, 
Maryland 20852-3804; telephone: 301/496-7057; fax: 301/402-0220. A 
signed Confidential Disclosure Agreement will be required to receive 
copies of the patent applications.

Simple, Quantitative and Highly Specific Antibody Detection of Lyme 
Disease

    Description of Invention: This invention uses the Luciferase 
Immunoprecipitation System (LIPS) as a highly specific and high 
throughput method for diagnosing Borrelia burgdorferi (Bb) infection, a 
causative agent of Lyme disease. Many antigens, fused to the renilla 
luciferase (RUC) system, were tested for their ability to detect the 
disease; however, a novel synthetic protein called VOVO displayed the 
highest sensitivity and specificity of those tested. VOVO demonstrated 
94% sensitivity and 100% specificity and markedly out-performed the C6 
ELISA test (currently the most sensitive test available, with 76% 
sensitivity and 98% specificity) in an analysis of independent 
validation serum sets. Unlike the C6 ELISA, the VOVO LIPS assay 
displayed a wide dynamic range of antibody detection spanning over a 
10,000-fold range without serum dilution. These results indicate that 
LIPS screening method using VOVO or other Bb antigens offer a more 
convenient, efficient and quantitative approach to serological 
screening of antibodies to Lyme disease.
    The VOVO LIPS test may benefit from a large market as it could 
potentially become part of a routine screening panel for Lyme disease. 
In addition to its high sensitivity and specificity, the test also 
provides a rapid, simple and high-through-put approach for efficient 
screening of the disease. It may also be adapted for detection of 
Borrelia species endemic to other regions of the world.
    Applications:
     Increased sensitivity and specificity for detection of 
Lyme disease.
     Rapid and convenient detection of Lyme disease.
    Development Status: Early Stage.
    Market: 29,000 new cases per year in the U.S.
    Inventors: Peter D. Burbelo (NIDCR), Michael J. Iadarola (NIDCR), 
Adriana R. Marques (NIAID).
    Publication: PD Burbelo et al. Rapid, Simple, Quantitative, and 
Highly Sensitive Antibody Detection for Lyme Disease. Clin Vaccine 
Immunol. 2010 Apr 14; Epub ahead of print, doi:10.1128/CVI.00476-09. 
[PubMed: 20392886]
    Patent Status: U.S. Provisional Application No. 61/312,520 filed 10 
Mar 2010 (HHS Reference No. E-036-2010/0-US-01).
    Licensing Status: Available for licensing.
    Licensing Contact: Susan Ano, PhD; 301-435-5515; [email protected].
    Collaborative Research Opportunity: The National Institute of 
Dental and Craniofacial Research, Laboratory of Sensory Biology, 
Neurobiology and Pain Therapeutics Section, is seeking statements of 
capability or interest from parties interested in collaborative 
research to further develop, evaluate, or commercialize this 
technology. Please contact David W. Bradley, PhD at 301-402-0540 or 
[email protected].

Software System for Processing and Analysis of Multi-Dimensional NMR 
Data

    Description of Invention: Available for licensing is a software 
system useful in applications involving nuclear magnetic resonance 
(NMR). The software system, called NMRPipe, is written in the C 
programming language, and makes use of the TCL/TK scripting 
environment. The system includes over 500 modules for processing and 
analyzing experimental data of one to four dimensions collected on NMR 
spectrometers. The system exploits the UNIX computer operating system 
facilities of pipelines and scripts to link modules in a highly 
flexible, user-definable manner. NMR is a widely used analytical 
method, applied to both solution and solid state samples. The 
information obtained from such data pertains to the structure, motion, 
and interactions of molecular systems, including proteins, nucleic 
acids, and organic molecules.
    Applications:
     Biomedical research for studying protein and nucleic acid 
structures and their interactions.
     Chemical applications involving synthesis, identification, 
or production of organic molecules.
    Development Status:
     The software is mature.
     Binary executables of the software have been widely 
distributed, both to academic institutions as well as commercial 
organizations.
     The software is under active development.
     The software will be readily available upon request.
    Inventors: Frank Delaglio (NIDDK).
    Related Publications:
    1. Kontaxis G, Delaglio F, Bax A. Molecular fragment replacement 
approach to protein structure determination by chemical shift and 
dipolar homology database mining. Methods Enzymol. 2005;394:42-78. 
[PubMed: 15808217]
    2. Delaglio F, Wu Z, Bax A. Measurement of homonuclear proton 
couplings from regular 2D COSY spectra. J Magn Reson. 2001 
Apr;149(2):276-281. [PubMed: 11318630]
    3. Cornilescu G, Delaglio F, Bax A. Protein backbone angle 
restraints from searching a database for chemical shift and sequence 
homology. J Biomol NMR. 1999 Mar;13(3):289-302. [PubMed: 10212987]
    4. Delaglio F, Grzesiek S, Vuister GW, Zhu G, Pfeifer J, Bax A. 
NMRPipe: a multidimensional spectral processing system based on UNIX 
pipes. J Biomol NMR. 1995 Nov;6(3):277-293. [PubMed: 8520220]
    Patent Status: HHS Reference No. E-076-2009/0--Software. Patent 
protection is not being pursued for this technology.
    Licensing Status: Available for licensing.
    Licensing Contacts: Uri Reichman, PhD, MBA; 301-435-4616; 
[email protected]; or John Stansberry, PhD; 301-435-5236; [email protected].
    Collaborative Research Opportunity: The National Institute of 
Diabetes and Digestive and Kidney Diseases is seeking statements of 
capability or interest from parties interested in collaborative 
research to further develop, evaluate, or commercialize the NMRPipe 
software system. Please contact Cindy Fuchs at 301-451-3636 or Frank 
Delaglio at [email protected] for more information.

Target Activated Microdissection--Kits and High Throughput Applications

    Description of Invention: A variety of techniques have been used to 
microdissect specific cells or cell populations from a histological 
sample under direct microscopic visualization. Original microdissection 
techniques involved painstaking (and sometimes clumsy) manual 
dissection using needles or other micro-manipulation

[[Page 29765]]

devices to isolate individual cells based on visible, histological 
characteristics.
    The subject technology is a novel method of performing specific 
target activated transfer from a biological sample (i.e. tissue) for 
analysis using a device system that can be automated for high 
throughput analysis or using benchtop kits. The method employs a 
localized reagent, such as an absorbative stain or immunoreagent that 
specifically determines the microadhesion of desired cellular material 
in a tissue sample to a transfer surface such as a thermoplastic 
polymer film. The energy from a light or heat source causes the 
specific microadhesion of the target cells or cell populations to the 
thermoplastic transfer surface without damage to the cells. Subsequent 
separation of the film from the tissue section selectively removes the 
adhered target from the tissue section. The method is specific and 
eliminates the need for direct manual visualization. Kits based on the 
method have the distinct advantage of not requiring expensive 
equipment; and thus, are a cost effective option for microdissection 
and analysis.
    Applications:
     Microdissection and analysis kits for histological 
samples.
     High throughput analysis of biological samples.
    Advantages:
     Does not require a visual detection step.
     Kits based on the method are low cost options for 
microdissection.
     Automated high throughput microdissection and analysis 
capabilities.
    Development Status: In vitro data can be provided upon request.
    Inventors: Michael R. Emmert-Buck (NCI), Robert F. Bonner (NICHD), 
et al.
    Publications:
    1. Tangrea MA, Chuaqui RF, Gillespie JW, Ahram M, Gannot G, Wallis 
BS, Best CJ, Linehan WM, Liotta LA, Bonner RF, Emmert-Buck MR. 
Expression microdissection: operator-independent retrieval of cells for 
molecular profiling. Diagn Mol Pathol. 2004 Dec;13(4):207-212. [PubMed: 
15538110]
    2. Grover A, Woodson KA, Tangrea MA, Wallis BS, Hanson J, Chuaqui 
RF, Gillespie JW, Erickson HS, Bonner RF, Pohida T, Emmert-Buck MR, 
Libutti SK. Tumor-associated endothelial cells display GSTP1 and RAR 
beta2 promoter methylation in human prostate cancer. J Translational 
Med. 2006 Mar 2;4:13. [PubMed: 16512911]
    3. Hanson JC, Rodriguez-Canales J, Bonner RF, Pohida T, Tangrea MT, 
Emmert-Buck MR. Expression Microdissection Adapted to Commercial Laser 
Dissection Instruments (Submitted for publication).
    Patent Status:
    HHS Reference No. E-113-2003/0--
     U.S. Patent Application No. 10/543,218 filed 22 Jul 2005, 
allowed.
     U.S. Patent Application No. 12/753,566 filed 02 Apr 2010.
     Australian Patent 2003256803 issued 21 Jan 2010.
     Australian Patent Application No. 2009250964 filed 23 Jul 
2009.
     Canadian Patent Application No. 2513646 filed 23 Jun 2003.
    HHS Reference No. E-113-2003/1--
     U.S. Patent 7,695,752 issued 13 Apr 2010.
     U.S. Patent Application No. 12/713,105 filed 24 Feb 2010.
    Licensing Status: Available for licensing.
    Licensing Contact: Kevin W. Chang, PhD; 301-435-5018; 
[email protected].

Therapeutic HIV Vaccine and Associated Protocols

    Description of Invention: This technology describes a therapeutic 
HIV DNA vaccine to be administered to individuals who have previously 
experienced or are undergoing antiretroviral therapy (ART). The 
therapeutic DNA vaccine can also be administered in combination with a 
vector encoding an IL-15 and/or IL-15 receptor alpha (IL-15Ra) 
polypeptide. In primate studies, the technology was found to be 
particularly effective when the vaccine composition was administered by 
electroporation and expressed six (6) HIV antigens (including two (2) 
gag polypeptides and two (2) envelope polypeptides) and IL-15 and IL-
15Ra. The antigens are typically modified with a destabilizing 
sequence, a secretory polypeptide and/or a degradation signal. 
Successive administration up to as many as nine resulted in continual 
boost of the immune response against the encoded antigen. A potent 
immunotherapeutic vaccine as described here could be an important 
technology for the fight against HIV/AIDS.
    Applications: Therapeutic HIV DNA vaccines.
    Development Status: Primate data available.
    Inventors: Barbara Felber et al. (NCI).
    Patent Status:
     U.S. Patent Application No. 12/522,775 filed 10 Jul 2009, 
claiming priority to 12 Jan 2007 (HHS Reference No. E-103-2007/0-US-
03).
     U.S. Patent Application No. 12/160,263 filed 08 Jul 2008, 
claiming priority to 13 Jan 2006 (HHS Reference No. E-254-2005/2-US-
12); and related international patent applications.
     U.S. Patent Application No. 11/571,879 filed 09 Jan 2007, 
claiming priority to 09 Jul 2004 (HHS Reference No. E-249-2004/1-US-
02).
     U.S. Patent Application No. 12/426,901 filed 20 Apr 2009, 
claiming priority to 01 Nov 2000 (HHS Reference No. E-308-2000/0-PCT-
02); and related international patent/patent applications.
    Licensing Status: Available for licensing.
    Licensing Contact: Kevin W. Chang, PhD; 301-435-5018; 
[email protected].
    Collaborative Research Opportunity: The National Cancer Institute 
is seeking statements of capability or interest from parties interested 
in collaborative research to further develop, evaluate, or 
commercialize HIV DNA vaccines. Please contact John D. Hewes, PhD at 
301-435-3121 or [email protected] for more information.

A Novel Chimeric Bifunctional Protein for Prevention and Treatment of 
HIV Infection

    Description of Invention: This invention relates to bifunctional 
fusion proteins effective in HIV neutralization. Specifically, the 
invention is a genetically engineered chimeric protein composed of a 
soluble extracellular region of human CD4 (sCD4) attached via a 
flexible polypeptide linker to a single-chain construct of a human 
monoclonal antibody directed against a CD4-induced, highly conserved 
gp120 determinant involved in co-receptor interaction and virus entry. 
Mechanistically, the binding of the sCD4 moiety to the HIV gp120 Env 
glycoprotein induces a conformational change that enables the antibody 
moiety to bind, thereby blocking Env function and virus entry. This 
novel design provides the protein with unique characteristics that 
enables its extremely strong binding to gp120, thus rendering it a 
potential effective antiviral agent against HIV. Recent studies 
(Lagenaur et al. Retrovirology 7:11, 2010) indicate that this novel 
bispecific protein displays extremely broad neutralizing activity 
against genetically diverse primary HIV-1 isolates, with breadth much 
greater than previously described (Dey et al. J. Virology 77:2859, 
2003). The potency is generally at least 10-fold greater than the best 
described HIV-1 neutralizing monoclonal antibodies, and the protein is 
highly active against many HIV-1 isolates that are refractory to 
neutralization by these antibodies. The bifunctional protein is 
comparably potent against isogenic virions produced from a human cell 
line versus PBMC; by contrast, the broadly-reactive monoclonal 
antibodies are much less

[[Page 29766]]

potent against virions produced from PBMC, perhaps due to differences 
in glycosylation. Importantly, the bifunctional protein is composed of 
almost entirely human sequences. It potentially can be linked to other 
functional moieties to achieve desired properties (longer plasma half-
life, selective killing of HIV-infected cells, imaging of viral 
reservoirs, etc.).
    The chimeric protein of this invention has considerable potential 
for prevention of HIV-1 infection, both as a topical microbicide and as 
a systemic agent to protect during and after acute exposure (e.g. 
vertical transmission, post exposure prophylaxis). It also has 
potential utility for treatment of chronic infection, including gene 
therapy strategies involving hematopoietic stem cells and/or viral 
vectors. Such proteins, nucleic acid molecules encoding them, and their 
production and use in preventing or treating viral infections are 
claimed in the patents issued for this invention.
    Applications:
     Prophylactic and/or therapeutic treatment for HIV 
infection.
     Topical microbicide treatment to protect against HIV 
infection.
     Imaging of HIV infected cells in tissues.
    Advantages:
     High neutralization efficiency due to unique bifunctional 
binding characteristics.
     Potentially minimally immunogenic or toxic (human 
sequences and possibly low treatment doses).
     Broad neutralizing activity.
     Mechanism of action less susceptible to resistance.
    Development Status:
     Reproducible production and scale-up of chimeric protein 
has been demonstrated.
     Potent and broad neutralization of genetically diverse 
HIV-1 clinical isolates was demonstrated.
    Market: The race to develop effective antiviral strategies against 
HIV infection is ongoing. The problems exhibited by conventional drugs 
such (i.e. toxicity and resistance) have triggered the pursuit of 
alternative approaches to HIV/AIDS prevention and treatment. One of the 
new approaches is the development of neutralizing antibodies against 
the HIV envelope proteins. This approach has not yet yielded any 
commercially viable treatment. It is believed that the approach 
presented in the subject invention will circumvent many of the 
shortcomings of the existing drugs and other pursued approaches. If 
this approach is successful the commercial rewards will be huge because 
of the global magnitude of HIV epidemics.
    Inventor: Edward A. Berger (NIAID).
    Related Publications:
    1. Lagenaur LA, Villarroel VA, Bundoc V, Dey B, Berger EA. sCD4-17b 
bifunctional protein: Extremely broad and potent neutralization of HIV-
1 pseudotyped viruses from genetically diverse primary isolates. 
Retrovirology 2010 Feb 16; 7:11. [PubMed: 20158904]
    2. Dey B, Del Castillo CS, Berger EA. Neutralization of human 
immunodeficiency virus type 1 by sCD4-17b, a single-chain chimeric 
protein, based on sequential interaction of gp120 with CD4 and 
coreceptor. J Virol. 2003 March; 77(5):2859-2865. [PubMed: 12584309]
    Patent Status:
    HHS Reference No. E-039-1999/0--
     U.S. Patent No. 7,115,262, issued 03 Oct 2006.
     U.S. Application No. 11/535,957, filed 27 Sep 2006, 
published 18 Oct 2007 as 20070243208.
     Australian Patent No. 765218, issued 30 Jul 2003.
     European Patent No. 1161445 issued 03 Sep 2008 for France, 
Germany, Great Britain, Italy.
     Applications pending in Canada, Japan.
    Licensing Status: Available for licensing.
    Licensing Contacts: Uri Reichman, PhD, MBA; 301-435-4616; 
[email protected]; or Susan Ano, PhD, 301-435-5515; [email protected].
    Collaborative Research Opportunity: The NIAID, Office of Technology 
Development, is seeking statements of capability or interest from 
parties interested in collaborative research to further develop, 
evaluate, or commercialize ``A Novel Chimeric Protein for Prevention 
and Treatment of HIV Infection.'' Please contact Marguerite J. Miller 
at 301-435-8619 for more information.

    Dated: May 20, 2010.
Richard U. Rodriguez,
Director, Division of Technology Development and Transfer, Office of 
Technology Transfer, National Institutes of Health.
[FR Doc. 2010-12794 Filed 5-26-10; 8:45 am]
BILLING CODE 4140-01-P