[Federal Register Volume 75, Number 79 (Monday, April 26, 2010)]
[Notices]
[Pages 21638-21640]
From the Federal Register Online via the Government Publishing Office [www.gpo.gov]
[FR Doc No: 2010-9641]


-----------------------------------------------------------------------

DEPARTMENT OF HEALTH AND HUMAN SERVICES

National Institutes of Health


Government-Owned Inventions; Availability for Licensing

AGENCY: National Institutes of Health, Public Health Service, HHS.

ACTION: Notice.

-----------------------------------------------------------------------

SUMMARY: The inventions listed below are owned by an agency of the U.S. 
Government and are available for licensing in the U.S. in accordance 
with 35 U.S.C. 207 to achieve expeditious commercialization of results 
of federally-funded research and development. Foreign patent 
applications are filed on selected inventions to extend market coverage 
for companies and may also be available for licensing.

ADDRESSES: Licensing information and copies of the U.S. patent 
applications listed below may be obtained by writing to the indicated 
licensing contact at the Office of Technology Transfer, National 
Institutes of Health, 6011 Executive Boulevard, Suite 325, Rockville, 
Maryland 20852-3804; telephone: 301/496-7057; fax: 301/402-0220. A 
signed Confidential Disclosure Agreement will be required to receive 
copies of the patent applications.

New Mouse Strain With Conditional Deletion of SMAD7: Analysis of 
Disease Processes Involving Immunological, Fibrotic or Cardiovascular 
Indications

    Description of Invention: SMAD7 conditional knockout mice are 
available for licensing. SMAD7 can be knocked out by breeding with CRE-
recombinase transgenic mice with a variety of promoters to yield tissue 
or cell type-specific deletions of SMAD7. SMAD7 has been shown to play 
a role in bone morphogenesis, cardiovascular tissue generation, immune 
regulation and fibrosis. Therefore, these mice provide a unique model 
to examine the role of the SMAD7 gene in disease processes that involve 
immunological, fibrotic, or cardiovascular components. Specifically, 
these mice may represent a novel model of Scleroderma, a disease with 
both an immunological and fibrotic component.
    Applications:
     Mouse model of Scleroderma.
     Means of studying bone morphogenesis and cardiovascular 
tissue generation.
     Means of studying the role of SMAD7 in immune regulation.
    Inventors: Marilyn Diaz (NIEHS).
    Related Publication: Dong C, Zhu S, Wang T, Yoon W, Li Z, Alvarez 
RJ, Dijke P, White B, Wigley FM, Godschmidt-Clermont PJ. Deficient 
Smad7 expression: A putative molecular defect in scleroderma. Proc Natl 
Acad Sci USA. 2002 Mar 19;99(6):3908-3913. [PubMed: 11904440]
    Patent Status: HHS Reference No. E-040-2010/0--Research Material. 
Patent protection is not being pursued for this technology.
    Licensing Status: This technology is available as a research tool 
under a Biological Materials License.
    Licensing Contact: Steve Standley, Ph.D.; 301-435-4074; 
[email protected].
    Collaborative Research Opportunity: The NIEHS is seeking statements 
of capability or interest from parties interested in collaborative 
research to further develop, evaluate, or commercialize this 
technology. Please contact Dr. Elizabeth M. Denholm, 
[email protected], for more information.

A Method of Reducing Cholesterol Biosynthesis With Specific MicroRNAs

    Description of Invention: This technology is directed to the 
discovery of specific microRNAs that target and downregulate enzymes 
within the cholesterol biosynthetic pathway and is currently being 
tested in vivo.
    Briefly, microRNAs regulate the translation of messenger RNAs 
(mRNAs)

[[Page 21639]]

into protein. The inventors have discovered a set of specific microRNAs 
that downregulate the expression of multiple enzymes in the cholesterol 
biosynthetic pathway. Importantly, this technology may provide the 
benefits of cholesterol lowering therapies to patients that are not 
suited for statin-based treatments. Statins block the cholesterol 
biosynthetic pathway at a single enzymatic step and may result in the 
deleterious build-up of a metabolic intermediate. In contrast, this 
technology simultaneously targets the expression of multiple enzymes 
required for cholesterol biosynthesis and thus may avoid the build-up 
of metabolic intermediates. The reduction of cholesterol biosynthesis 
has been indicated for improved cardiovascular health and lowers the 
risk for heart disease, heart attack, and stroke.
    Potential Applications and Advantages:
     A method of reducing cellular cholesterol biosynthesis.
     A method of reducing systemic cholesterol in a subject.
     May be effective for patients not suited for statin-based 
treatment.
     Targets multiple enzymes in the cholesterol biosynthetic 
pathway simultaneously.
    Development Status: Early stage.
    Market: According to the Centers for Disease Control (CDC), 
approximately one in every six adults has high cholesterol and 
individuals with high total cholesterol have approximately twice the 
risk of heart disease in comparison to individuals with optimal levels.
    Inventors: Kasey Vickers and Alan Remaley (NHLBI).
    Publication: Vickers KC and Remaley AT. MicroRNAs in 
atherosclerosis and lipoprotein metabolism. Curr Opin Endocrinol 
Diabetes Obesity. 2010 Apr;17(2):150-155; DOI 10.1097/
MED.0b013e32833727a1. [PubMed: 20150807]
    Patent Status: U.S. Provisional Application No. 61/280,170 filed 30 
Oct 2009 (HHS Reference No. E-142-2009/0-US-01).
    Licensing Status: Available for licensing.
    Licensing Contact: Fatima Sayyid, MHPM; 301-435-4521; 
[email protected].
    Collaborative Research Opportunity: The National Heart, Lung and 
Blood Institute, Pulmonary Vascular Medicine Branch, is seeking 
statements of capability or interest from parties interested in 
collaborative research to further develop, evaluate, or commercialize 
microRNA regulation of the cholesterol biosynthetic pathway. Please 
contact Dr. Denise M. Crooks at 301-435-0103, [email protected] for 
more information.

Moraxella Catarrhalis Lipooligosaccharide Based Conjugate Vaccines for 
the Prevention of Otitis Media and Respiratory Infections

    Description of Invention: Moraxella catarrhalis is one of the three 
leading causative agents of otitis media in children. This is due in 
part to the current immunizations of children with Streptococcus 
pneumoniae polysaccharide and conjugate vaccines to prevent otitis 
media. The proportion of otitis media caused by pneumococcal strains 
covered by the vaccines have decreased while those caused by Moraxella 
catarrhalis and nontypeable Haemophilus influenzae have significantly 
increased. At some point during early childhood, otitis media affects 
more than 80% of children under 6 years of age. Otitis media can lead 
to deafness and language or learning deficits. In adults, Moraxella 
catarrhalis is a major cause of bronchopneumonia and exacerbation of 
existing chronic obstructive pulmonary disease for chronic heavy 
smokers or elderly patients with chronic pulmonary disease. Moraxella 
catarrhalis infections can be treated with antimicrobial agents; 
however, the emergence of antibiotic resistance makes vaccines against 
Moraxella catarrhalis an attractive alternative to antimicrobial drugs. 
There are currently no Moraxella catarrhalis vaccines on the market.
    The subject technologies are conjugate vaccines against Moraxella 
catarrhalis. The vaccines are comprised of isolated 
lipooligosaccharides (LOS) from which esterified fatty acids have been 
removed to produce detoxified LOS or from which lipid A has been 
removed to produce a detoxified oligosaccharide (OS) covalently linked 
to an immunogenic carrier such as tetanus toxoid, and adjuvants such as 
alum. The vaccines can potentially be used as a vaccine component in a 
combination vaccine containing other pediatric vaccine components.
    Applications: Vaccines for the prevention of respiratory infections 
and otitis media caused by Moraxella catarrhalis.
    Advantages:
     Novel vaccine candidates.
     LOS is a conserved antigen.
    Development Status: In vitro and in vivo (mouse animal model) data 
is available and can be provided upon request.
    Market:
     Pediatric vaccines.
     Preventative vaccines.
    Inventors: Xin-Xing Gu (NIDCD) and John Robbins (NICHD).
    Related Publications: Manuscripts in preparation, available upon 
request under a confidential disclosure agreement.
    Patent Status:
     U.S. Patent 6,685,949 issued 03 Feb 2004 (HHS Ref. No. E-
264-1997/0-US-13).
     U.S. Patent 7,641,906 issued 05 Jan 2010 (HHS Ref. No. E-
217-2001/0-US-06).
    Licensing Status: Available for licensing.
    Licensing Contact: Kevin W. Chang, Ph.D.; 301-435-5018; 
[email protected].
    Collaborative Research Opportunity: The National Institute on 
Deafness and Other Communication Disorders, Vaccine Research Section, 
is seeking statements of capability or interest from parties interested 
in collaborative research to further develop, evaluate, or 
commercialize the subject technology. Please contact Brian W. Bailey, 
Ph.D. at 301-594-4094 or [email protected] for more information.

Nontypeable Haemophilus Influenzae Lipooligosaccharide Based Conjugate 
Vaccines for the Prevention of Otitis Media and Respiratory Infections

    Description of Invention: Nontypeable Haemophilus influenzae is one 
of the leading causative agents of otitis media in children and 
accounts for 11% of pneumonia cases in children. This is due in part to 
the current immunizations of children with Streptococcus pneumoniae 
polysaccharide and conjugate vaccines to prevent otitis media. The 
proportion of otitis media caused by pneumococcal strains covered by 
the vaccines have decreased while those caused by nontypeable 
Haemophilus influenzae have significantly increased. At some point 
during early childhood, otitis media affects more than 80% of children 
under 6 years of age. Otitis media can lead to deafness and language or 
learning deficits. In adults, nontypeable Haemophilus influenzae causes 
respiratory tract infections primarily in persons with chronic 
obstructive pulmonary disease, one of the most common lung diseases. 
Exacerbation of chronic obstructive pulmonary disease in the elderly is 
the fourth leading cause of death in the United States. Otitis media 
can be treated with antibiotics; however, the emergence of antibiotic 
resistance makes vaccines against nontypeable Haemophilus influenzae an 
attractive alternative to those classes of drugs. The

[[Page 21640]]

current Haemophilus influenzae type b conjugate vaccines have no 
protective effect against nontypeable strains.
    The technologies described herein are conjugate vaccines against 
nontypeable Haemophilus influenzae. The vaccines are comprised of 
lipooligosaccharides (LOS) from which esterified fatty acids have been 
removed from lipid A to form detoxified LOS conjugated to an 
immunogenic carrier such as tetanus toxoid, and an adjuvant such as 
alum. In vivo data in the Chinchilla animal model are available. The 
vaccines can be potentially used as a component in a combination 
vaccine with other pediatric vaccine components.
    Applications: Vaccines for the prevention of respiratory infections 
and otitis media caused by nontypeable Haemophilus influenzae.
    Advantages:
     Novel vaccine candidates.
     Conserved antigen.
    Development Status: In vitro and in vivo data can be provided upon 
request. Data is also available from a phase I clinical trial with a 
representative vaccine showing safety and immunogenicity in adults.
    Market:
     Pediatric vaccines.
     Preventative vaccines.
    Inventors: Xin-xing Gu (NIDCD), John Robbins (NICHD), et al.
    Related Publication: W Hong et al. Protection against nontypeable 
Haemophilus influenzae challenges by mucosal vaccination with a 
detoxified lipooligosaccharide conjugate in two chinchilla models. 
Microbes Infect. 2010 Jan;12(1):11-18. [PubMed: 19782149]
    Patent Status:
     U.S. Patent 6,207,157 issued 27 Mar 2001 (HHS Ref. No. E-
228-1995/1-US-01).
     U.S. Patent 6,607,725 issued 19 Aug 2003 (HHS Ref. No. E-
228-1995/1-US-02).
     U.S. Patent 7,641,906 issued 05 Jan 2010 (HHS Ref. No. E-
217-2001/0-US-06).
    Licensing Status: Available for licensing.
    Licensing Contact: Kevin W. Chang, Ph.D.; 301-435-5018; 
[email protected].
    Collaborative Research Opportunity: The National Institute on 
Deafness and Other Communication Disorders, Vaccine Research Section, 
is seeking statements of capability or interest from parties interested 
in collaborative research to further develop, evaluate, or 
commercialize the subject technology. Please contact Brian W. Bailey, 
Ph.D. at 301-594-4094 or [email protected] for more information.

    Dated: April 20, 2010.
Richard U. Rodriguez,
Director, Division of Technology Development and Transfer, Office of 
Technology Transfer, National Institutes of Health.
[FR Doc. 2010-9641 Filed 4-23-10; 8:45 am]
BILLING CODE 4140-01-P