§ 184.1386

any of the following processes: reduced iron, electrolytic iron, and carbonyl iron.

- (1) Reduced iron is prepared by reacting ground ferric oxide with hydrogen or carbon monoxide at an elevated temperature. The process results in a grayish-black powder, all of which should pass through a 100-mesh sieve. It is lusterless or has not more than a slight luster. When viewed under a microscope, it appears as an amorphous powder free from particles having a crystalline structure. It is stable in dry air.
- (2) Electrolytic iron is prepared by electrodeposition. It is an amorphous, lusterless, grayish-black powder. It is stable in dry air.
- (3) Carbonyl iron is prepared by the decomposition of iron pentacarbonyl. It occurs as a dark gray powder. When viewed under a microscope, it appears as spheres built up with concentric shells. It is stable in dry air.
- (b) Iron, elemental (carbonyl, electrolytic, or reduced) meets the specifications of the Food Chemicals Codex. 3d Ed. (1981) (iron, carbonyl, p. 151; iron, electrolytic, pp. 151-152; iron, reduced; pp. 152-153), which is incorporated by reference. Copies are available from the National Academy Press, 2101 Constitution Ave. NW., Washington, DC 20418, or available for inspection at the National Archives and Records Administration (NARA). For information on the availability of this material at NARA, call 202-741-6030, or go to: http://www.archives.gov/federal register/code of federal regulations/ ibr locations.html.
- (c) In accordance with §184.1(b)(1), the ingredient is used in food as a nutrient supplement as defined in §170.3(o)(20) of this chapter, with no limitation other than current good manufacturing practice. The ingredient may also be used in accordance with section 412(g) of the Federal Food, Drug, and Cosmetic Act (the act) (21 U.S.C. 350a(g)) or with regulations promulgated under section 412(a)(2) of the act (21 U.S.C. 350a(2)).
- (d) Prior sanctions for this ingredient different from the uses established in this section do not exist or have been waived.

[53 FR 16867, May 12, 1988]

§ 184.1386 Isopropyl citrate.

- (a) Isopropyl citrate is a mixture of the mono-, di-, and triisopropyl esters of citric acid. It is prepared by esterifying citric acid with isopropanol.
- (b) The ingredient must be of a purity suitable for its intended use.
- (c) In accordance with §184.1(b)(1), the ingredient is used in food with no limitation other than current good manufacturing practice. The affirmation of this ingredient as generally recognized as safe (GRAS) as a direct human food ingredient is based upon the following current good manufacturing practice conditions of use:
- (1) The ingredient is used as an antioxidant as defined in \$170.3(0)(3) of this chapter; a sequestrant as defined in \$170.3(0)(26) of this chapter; and a solvent and vehicle as defined in \$170.3(0)(27) of this chapter.
- (2) The ingredient is used in margarine in accordance with \$166.110 of this chapter; in nonalcoholic beverages as defined in \$170.3(n)(3) of this chapter; and in fats and oils as defined in \$170.3(n)(12) of this chapter at levels not to exceed current good manufacturing practice.
- (d) Prior sanctions for this ingredient different from the uses established in this section, or different from those set forth in part 181 of this chapter, do not exist or have been waived.

[59 FR 63896, Dec. 12, 1994, as amended at 73 FR 8607, Feb. 14, 2008]

§ 184.1387 Lactase enzyme preparation from Candida pseudotropicalis.

- (a) This enzyme preparation is derived from the nonpathogenic, nontoxicogenic yeast C. pseudotropicalis. It contains the enzyme lactase (β -D-galactoside galactohydrolase, EC 3.2.1.23), which converts lactose to glucose and galactose. It is prepared from yeast that has been grown by a pure culture fermentation process.
- (b) The ingredient meets the general requirements and additional requirements for enzyme preparations in the Food Chemicals Codex, 3d ed. (1981), pp. 107–110, which are incorporated by reference in accordance with 5 U.S.C. 552(a) and 1 CFR part 51. Copies are

available from the National Academy Press, 2101 Constitution Ave. NW., Washington, DC 20418, or may be examined at the Center for Food Safety and Applied Nutrition's Library, 5100 Paint Branch Pkwy., College Park, MD 20740, or at the National Archives and Records Administration (NARA). For information on the availability of this material at NARA, call 202–741–6030, or go to: http://www.archives.gov/federal_register/code_of_federal_regulations/ibr_locations.html.

- (c) In accordance with §184.1(b)(1), the ingredient is used in food with no limitations other than current good manufacturing practice. The affirmation of this ingredient as generally recognized as safe as a direct human food ingredient is based upon the following current good manufacturing practice conditions of use:
- (1) The ingredient is used as an enzyme, as defined in §170.3(o)(9) of this chapter, to convert lactose to glucose and galactose.
- (2) The ingredient is used in food at levels not to exceed current good manufacturing practice. Current good manufacturing practice is limited to use of this ingredient to reduce the lactose content in milk and milk-derived food products where food standards do not preclude such use.

[61 FR 7704, Feb. 29, 1996]

§184.1388 Lactase enzyme preparation from Kluyveromyces lactis.

- (a) This enzyme preparation is derived from the nonpathogenic, nontoxicogenic yeast Kluyveromyces lactis (previously named Saccharomyces lactis). It contains the enzyme Bgalactoside galactohydrase (CAS Reg. No. CBS 683), which converts lactose to glucose and galactose. It is prepared from yeast that has been grown in a pure culture fermentation and by using materials that are generally recognized as safe or are food additives that have been approved for this use by the Food and Drug Administration.
- (b) The ingredient meets the general and additional requirements for enzyme preparations in the Food Chemicals Codex, 3d Ed. (1981), p. 107–110, which is incorporated by reference. Copies are available from the National Academy Press, 2101 Constitution Ave.

- NW., Washington, DC 20418, or available for inspection at the National Archives and Records Administration (NARA). For information on the availability of this material at NARA, call 202–741–6030, or go to: http://www.archives.gov/federal_register/code_of_federal_regulations/ibr_locations.html.
- (c) In accordance with §184.1(b)(1), the ingredient is used in food with no limitation other than current good manufacturing practice. The affirmation of this ingredient as generally recognized as safe as a direct human food ingredient is based upon the following current good manufacturing practice conditions of use:
- (1) The ingredient is used as an enzyme as defined in §170.3(o)(9) of this chapter to convert lactose to glucose and galactose.
- (2) The ingredient is used in food at levels not to exceed current good manufacturing practice. Current good manufacturing practice is to use this ingredient in milk to produce lactase-treated milk, which contains less lactose than regular milk, or lactose-reduced milk, which contains at least 70 percent less lactose than regular milk.

[49 FR 47387, Dec. 4, 1984]

§184.1400 Lecithin.

- (a) Commercial lecithin is a naturally occurring mixture of the phosphatides of choline, ethanolamine, and inositol, with smaller amounts of othe lipids. It is isolated as a gum following hydration of solvent-extracted soy, safflower, or corn oils. Lecithin is bleached, if desired, by hydrogen peroxide and benzoyl peroxide and dried by heating.
- (b) The ingredient meets the specifications of the Food Chemicals Codex, 3d Ed. (1981), pp. 166–167, which is incorporated by reference. Copies are available from the National Academy Press, 2101 Constitution Ave. NW., Washington, DC 20418, or available for inspection at the National Archives and Records Administration (NARA). For information on the availability of this material at NARA, call 202–741–6030, or go to: http://www.archives.gov/federal_register/code_of_federal_regulations/ibr_locations.html.