Specification	Pipe class	Longitudinal joint factor (E)
ASTM A 106	Seamless ..	1.00
ASTM A 333/A 333M	Seamless	1.00
	Electric resistance welded	1.00
ASTM A 381	Double submerged arc welded	1.00
ASTM A 671	Electric-fusion-welded	1.00
ASTM A 672	Electric-fusion-welded	1.00
ASTM A 691	Electric-fusion-welded	1.00
API 5 L	Seamless	1.00
	Electric resistance welded	1.00
	Electric flash welded	1.00
	Submerged arc welded ..	1.00
	Furnace butt welded 60
Other	Pipe over 4 inches (102 millimeters) ..	. 80
Other	Pipe 4 inches (102 millimeters) or less 60

If the type of longitudinal joint cannot be determined, the joint factor to be used must not exceed that designated for "Other."
[Amdt. 192-37, 46 FR 10159, Feb. 2, 1981, as amended by Amdt. 192-51, 51 FR 15335, Apr. 23, 1986; Amdt. 192-62, 54 FR 5627, Feb. 6, 1989; 58 FR 14521, Mar. 18, 1993; Amdt. 192-85, 63 FR 37502, July 13, 1998; Amdt. 192-94, 69 FR 32894, June 14, 2004]

§ 192.115 Temperature derating factor (T) for steel pipe.

The temperature derating factor to be used in the design formula in § 192.105 is determined as follows:

Gas temperature in degrees Fahrenheit (Celsius)	Temperature derating factor (T)
$250{ }^{\circ} \mathrm{F}\left(121^{\circ} \mathrm{C}\right)$ or less	1.000
$300^{\circ} \mathrm{F}\left(149^{\circ} \mathrm{C}\right)$..	0.967
$350^{\circ} \mathrm{F}\left(177^{\circ} \mathrm{C}\right)$..	0.933
$400^{\circ} \mathrm{F}\left(204{ }^{\circ} \mathrm{C}\right)$..	0.900
$450^{\circ} \mathrm{F}\left(232{ }^{\circ} \mathrm{C}\right)$.......................................	0.867

For intermediate gas temperatures, the derating factor is determined by interpolation.
[35 FR 13257, Aug. 19, 1970, as amended by Amdt. 192-85, 63 FR 37502, July 13, 1998]

§ 192.117 [Reserved]

§192.119 [Reserved]

§ 192.121 Design of plastic pipe

Subject to the limitations of $\S 192.123$, the design pressure for plastic pipe is determined in accordance with either of the following formulas:

$$
\begin{aligned}
& P=2 S \frac{t}{(D-t)} 0.32 \\
& P=\frac{2 S}{(S D R-1)} 0.32
\end{aligned}
$$

Where:
$\mathrm{P}=$ Design pressure, gauge, kPa (psig).
$\mathrm{S}=$ For thermoplastic pipe, the HDB is determined in accordance with the listed specification at a temperature equal to $73^{\circ} \mathrm{F}$ (23 ${ }^{\circ} \mathrm{C}$), $100^{\circ} \mathrm{F}\left(38^{\circ} \mathrm{C}\right), 120^{\circ} \mathrm{F}\left(49^{\circ} \mathrm{C}\right)$, or $140^{\circ} \mathrm{F}(60$ $\left.{ }^{\circ} \mathrm{C}\right)$. In the absence of an HDB established at the specified temperature, the HDB of a higher temperature may be used in determining a design pressure rating at the specified temperature by arithmetic interpolation using the procedure in Part D.2. of PPI TR3/2004, $H D B / P D B / S D B / M R S$ Policies (incorporated by reference, see §192.7). For reinforced thermosetting plastic pipe, 11,000 psig (75,842 kPa).
$\mathrm{t}=$ Specified wall thickness, mm (in).
$\mathrm{D}=$ Specified outside diameter, mm (in).
SDR=Standard dimension ratio, the ratio of the average specified outside diameter to the minimum specified wall thickness, corresponding to a value from a common numbering system that was derived from the American National Standards Institute preferred number series 10 .
[Amdt. 192-78, 61 FR 28783, June 6, 1996, as amended by Amdt. 192-85, 63 FR 37502, July 13, 1998; Amdt. 192-94, 69 FR 32894, June 14, 2004; Amdt. 192-103, 71 FR 33407, June 9, 2006]
§ 192.123 Design limitations for plastic pipe.
(a) Except as provided in paragraph (e) of this section, the design pressure may not exceed a gauge pressure of 100 psig (689 kPa) for plastic pipe used in:
(1) Distribution systems; or
(2) Classes 3 and 4 locations.
(b) Plastic pipe may not be used where operating temperatures of the pipe will be:
(1) Below $-20^{\circ} \mathrm{F}\left(-20^{\circ} \mathrm{C}\right)$, or $-40^{\circ} \mathrm{F}$ $\left(-40^{\circ} \mathrm{C}\right)$ if all pipe and pipeline components whose operating temperature will be below $-29^{\circ} \mathrm{C}\left(-20^{\circ} \mathrm{F}\right)$ have a temperature rating by the manufacturer consistent with that operating temperature; or
(2) Above the following applicable temperatures:
(i) For thermoplastic pipe, the temperature at which the HDB used in the design formula under $\S 192.121$ is determined.
(ii) For reinforced thermosetting plastic pipe, $150^{\circ} \mathrm{F}\left(66^{\circ} \mathrm{C}\right)$.
(c) The wall thickness for thermoplastic pipe may not be less than 0.062 inches (1.57 millimeters).
(d) The wall thickness for reinforced thermosetting plastic pipe may not be less than that listed in the following table:

Nominal size in inches (millimeters).	Minimum wall thickness inches (millimeters).
2 (51)	0.060 (1.52)
3 (76)	0.060 (1.52)
4 (102)	0.070 (1.78)
6 (152) ...	0.100 (2.54)

(e) The design pressure for thermoplastic pipe produced after July 14, 2004 may exceed a gauge pressure of 100 psig (689 kPa) provided that:
(1) The design pressure does not exceed 125 psig (862 kPa);
(2) The material is a PE2406 or a PE3408 as specified within ASTM D2513 (incorporated by reference, see §192.7);
(3) The pipe size is nominal pipe size (IPS) 12 or less; and
(4) The design pressure is determined in accordance with the design equation defined in § 192.121.
[35 FR 13257, Aug. 19, 1970, as amended by Amdt. 192-31, 43 FR 13883, Apr. 3, 1978; Amdt. 192-78, 61 FR 28783, June 6, 1996; Amdt. 192-85, 63 FR 37502, July 13, 1998; Amdt. 192-93, 68 FR 53900, Sept. 15, 2003; 69 FR 32894, June 14, 2004; Amdt. 192-94, 69 FR 54592, Sept. 9, 2004; Amdt. 192-103, 71 FR 33407, June 9, 2006]

§ 192.125 Design of copper pipe.

(a) Copper pipe used in mains must have a minimum wall thickness of 0.065
inches (1.65 millimeters) and must be hard drawn.
(b) Copper pipe used in service lines must have wall thickness not less than that indicated in the following table:

Standard size inch (millimeter)	Nominal O.D. inch (millimeter)	Wall thickness inch (milli- meter)	
	Nominal	Tolerance	
$1 / 2(13)$	$.625(16)$	$.040(1.06)$	$.0035(.0889)$
$5 / 8(16)$	$.750(19)$	$.042(1.07)$	$.0035(.0889)$
$3 / 4(19)$	$.875(22)$	$.045(1.14)$	$.004(.102)$
$1(25)$	$1.125(29)$	$.50(1.27)$	$.004(.102)$
$11 / 4(32)$	$1.375(35)$	$.055(1.40)$	$.0045(.1143)$
$11 / 2(38)$	$1.625(41)$	$.060(1.52)$	$.0045(.1143)$

(c) Copper pipe used in mains and service lines may not be used at pressures in excess of 100 p.s.i. (689 kPa) gage.
(d) Copper pipe that does not have an internal corrosion resistant lining may not be used to carry gas that has an average hydrogen sulfide content of more than 0.3 grains $/ 100 \mathrm{ft}^{3}\left(6.9 / \mathrm{m}^{3}\right)$ under standard conditions. Standard conditions refers to $60^{\circ} \mathrm{F}$ and $14.7 \mathrm{psia}\left(15.6^{\circ} \mathrm{C}\right.$ and one atmosphere) of gas.
[35 FR 13257, Aug. 19, 1970, as amended by Amdt. 192-62, 54 FR 5628, Feb. 6, 1989; Amdt. 192-85, 63 FR 37502, July 13, 1998]

Subpart D—Design of Pipeline Components

§ 192.141 Scope.

This subpart prescribes minimum requirements for the design and installation of pipeline components and facilities. In addition, it prescribes requirements relating to protection against accidental overpressuring.

§ 192.143 General requirements.

(a) Each component of a pipeline must be able to withstand operating pressures and other anticipated loadings without impairment of its serviceability with unit stresses equivalent to those allowed for comparable material in pipe in the same location and kind of service. However, if design based upon unit stresses is impractical for a particular component, design may be based upon a pressure rating established by the manufacturer by pressure testing that component or a prototype of the component.
(b) The design and installation of pipeline components and facilities

